

Global Supersonic Initiatives Overview and the Russian Approach

\$11111111111A

Prof. Sergey Chernyshev Chief Scientific Officer, TsAGI Russia



### Supersonic Flight — a New Quality of Aviation Mobility Case Study: Moscow–Vladivostok Flight



<u>цаги</u> 1918-2018

SAG



# **First Generation of Supersonic Passenger Aircraft**



| CCCP - 77115<br>CCCP - 77115<br>Tu-144 (USSR, 1968–1978)             | Concorde (Great Britain | n-France, 1969–2003)       |
|----------------------------------------------------------------------|-------------------------|----------------------------|
| Key Problems                                                         | Tu-144, Concorde        | Current Requirements       |
| Unacceptable level of sonic boom, dBA                                | 96—106                  | Less than 65               |
| High level of initial shock overpressure, Pa                         | 120—140                 | 7—10 times less            |
| High level of noise near airport, exceeding current standards, EPNdB | By 25 EPNdB             | ICAO Ch.14 – 2 EPNdB       |
| High level community noise, EPNdB                                    | Chapter 3 ICAO + 30     | less 2 EPNdB to ICAO Ch.14 |
| High level LTO NOx EI, g/kN                                          | 50, CAEP6               | 60%—75% reduction          |
| High level NOx EI, g/kN                                              | More than 20            | Less than 10               |



1918-2018 TSAGI

# Global Projects of Supersonic Business Jets



|                                      | Flight Mach Number | Range, km | Q-ty PAX | First Flight                    |   |
|--------------------------------------|--------------------|-----------|----------|---------------------------------|---|
| <b>Aerion AS2</b> ,<br>USA           | 0.95 — 1.4         | 9300      | 9        | First flight in 2023            |   |
| <b>Gulfstream QSJ</b> ,<br>USA       | 1.6                | 7500      | 8        |                                 | A |
| <b>SAI &amp; LM QSST</b> ,<br>USA    | 2.0                | 7500      | 8        |                                 |   |
| <b>SpikeAerospace S-512</b> ,<br>USA | 1.6                | 10300     | 18       | First flight in 2021            |   |
| <b>Boom Supersonic</b> ,<br>USA      | 2.2                | 8800      | 55       | Demonstrator<br>in 2019         |   |
| <b>UAC / Sukhoi</b> ,<br>Russia      | 1.8                | 7500      | 12       | First flight —in<br>late 2020's |   |

1918-2018 TSAGI






1918-2018

TsAGI

Test aircraft (X-Plane) NASA, USA



#### Model in WT

| Flig<br>N | sht Mach<br>Iumber | Flight<br>Altitude, km | Propulsion | Project start | Current status | First fly      | N |
|-----------|--------------------|------------------------|------------|---------------|----------------|----------------|---|
|           | 1,4                | 17                     | from F-18  | 2016          | In progress    | In early 2020s | 7 |







Japan Aerospace Exploration Agency (JAXA)



| Flight Mach<br>number | Flight altitude, km | Propulsion | Project start | Current status         |   |
|-----------------------|---------------------|------------|---------------|------------------------|---|
| 1.39                  | 8                   | _          | 2011          | Tests from 2013 — 2015 | 7 |





#### Research and Technological Basis on Russian Supersonic Business Jet



Aerodynamic concept of Supersonic Business Jet with low level of sonic boom







Low sonic boom and low community noise

- ✓ High fuel efficiency and low DOC
- External visualization via artificial vision system
- ✓ Variable-cycle powerplant design
- Composite/composite-metal isogrid (bionic) fuselage
- ✓ Artificial intelligence
- ✓ 4D trajectory / traffic management





# **IF/IR** International Supersonic Technology Projects





| Acronym:      | HISAC                                                                                                                          |
|---------------|--------------------------------------------------------------------------------------------------------------------------------|
| Project Title | Environmentally-friendly high-speed aircraft                                                                                   |
| Objective     | Research on supersonic business jet providing low sonic boom and noise near airport areas                                      |
| Coordinator   | Dassault Aviation (France)                                                                                                     |
| Time Frame    | 01.05.2005 - 31.10.2009                                                                                                        |
| Partners      | 38 partners, incl. TsAGI, Alenia Aeronautica, ONERA, EADS, SNECMA, Rolls-Royce, Sukhoi Civil Aircraft Company, CIAM and others |



1918-2018 **TSAGI** 

## **International Supersonic Technology Projects**



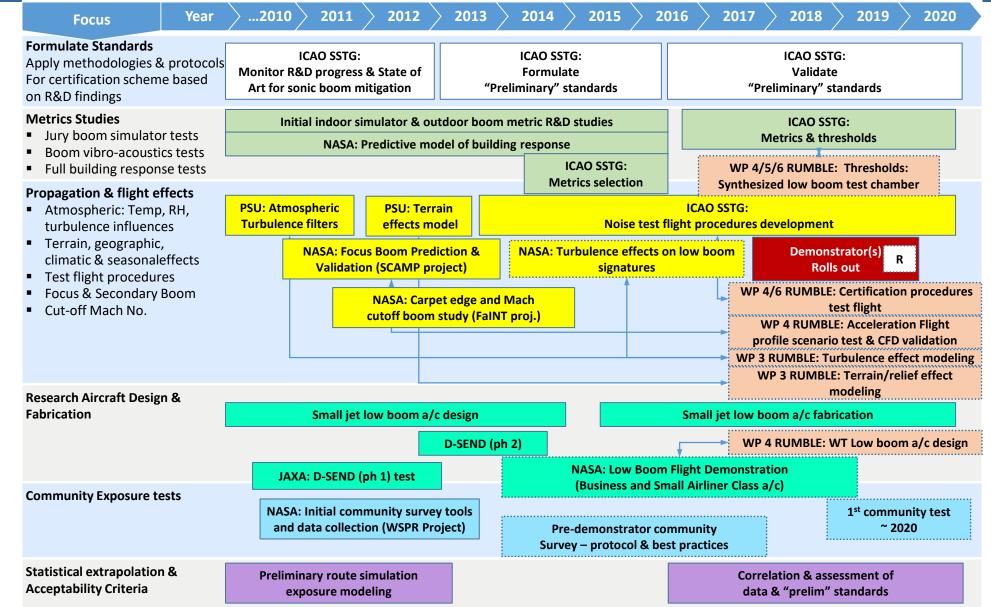




Technic Museum Sinsheim, Germany

| Acronym:      | RUMBLE                                                                                                                    |
|---------------|---------------------------------------------------------------------------------------------------------------------------|
| Project title | Regulation and norm for low sonic boom levels                                                                             |
| Objectives    | Formulation of proposals to determine the permissible overland sonic boom level and the corresponding measurement methods |
| Coordinator   | Airbus Group Innovations (AGI)                                                                                            |
| Time frame    | 2017—2020                                                                                                                 |
| Partners      | 18 partners, incl. ONERA, Dassault Aviation, TsAGI, Gromov Flight Research Institute, MAI, CIAM, SCAC, GosNIIAS, GkNIPAS  |






#### RUMBLE Contribution to ICAO Supersonic Research Roadmap



1918-2018

ſsAG







International standards for acceptable sonic boom level for overland flight



Ready-to-use jet engines that provide the required aircraft range and conform with ICAO Noise Standards near airport areas



A difficult trade-off between high performance and low environmental impact



Special aircraft operation conditions and its integration into the existing ATM system







The <u>Success</u> of New Generation Supersonic Passenger Aircraft Program <u>Requires</u>:

- Involvement and cooperation of all aviation leader organizations in supersonic (IFAR members)
- Advanced supersonic variable-cycle engines development on the basis of a modern or future core engines
- Development of a flight demonstrator
- Comprehensive R&D work to create full-size business and passenger jets

1918-2018 TSAGI



# Thank you for your attention!

4444444444

